关注新智造网

新智造网 > 加工问答 > 问答详情 我要提问

定制30万个航空塑料瓶子

认证会员 陈松梅 | 来自:江苏-扬州 | 浏览109次 | 提问时间:01-10 17:54 | 回答数量:0
我公司现需定制30万个航空塑料瓶子,容量:150ML,透明瓶子,具体要求如图,能做的联系。点击查看详细

塑料瓶子订单 塑料瓶子厂家

标签: 塑料瓶子 航空用品 塑料件 

您目前状态:非注册用户 (**部分为隐藏内容,仅对会员开放)

查看隐藏内容请先登录或注册会员 登  录 注  册

相关问答
近期,国家发展改革委批复了中国第二重型机械集团公司(以下简称二重)大型模锻压机建设项目的可行性研究报告,项目拟建设的大型模锻压力机最大压力可达8万吨,是目前世界上最大的模锻压机,超过了此前世界最大的俄罗斯7.5万吨模锻压机。 大型模锻压机主要用于铝合金、钛合金、高温合金、粉末合金等难变形材料进行热模锻和等温超塑性成形。其锻造特点是可通过大的压力、长的保压时间、慢的变形速度来改善变形材料的致密度,用细化材料晶粒来提高锻件的综合性能,提高整个锻件的变形均匀性,使难变形材料和复杂结构锻件通过等温锻造和超塑性变形来满足设计要求,可节约材料40%,达到机加工量少或近净型目标。等温模锻液压机是航空、航天、宇航及其他重要机械生产重要锻件的关键设备。 为提高航空产品的整体性能,大型模锻件在航空锻件中所占比例及单件尺寸越来越大。对于飞机主承力框、梁等整体构件,美国、俄罗斯、法国等主要航空大国都采用4.5~7.5万吨大型模锻压机进行加工。而我国现有的模锻压机吨位较小,工艺比较落后,框梁等航空模锻件大多采用焊接结构,无法实现整体化,不能完全满足大型飞机对综合性能、可靠性和寿命的要求。 二重是我国大型航空模锻件的重要生产基地之一,有30多年的材料研究和生产经验,先后为我国航空工业提供了40余万件航空模锻件,产品覆盖了所有国产机型。此次投资建设的大型模锻压机建设项目,可解决航空等工业大型整体结构件毛坯制造的瓶颈,促进大型模锻件制造技术的消化、吸收和创新,为我国大型飞机的研制创造条件,同时满足机械制造、石油、化工、动力等民用行业对大型模锻件产品的需求。项目的实施,对改变我国大型模锻件依赖进口、受制于人的被动局面,实现大型模锻产品的自主制造,具有重要的战略意义。 经济建设和国防建设需要大型模锻压机 由于高温合金、高强度合金钢以及钛合金的飞速发展与应用,以及航空、航天、核能工业中所需要的主要构件向大型整体模锻和精密模锻的方向发展,我国目前有许多本来需要多向模锻的产品,由于没有手段只能改为铸造或自由锻,或者进口。我国迫切需要工作压力在5~8万吨范围的大型模锻压机来加工这类材质的锻件。 据调查结果表明,黑色模锻件的产量只能满足全国需要量的60%左右。这个数据仅统计了航空和其它国防工业部门的需用量。若把我国民用工业所需的数量考虑进去的话,其比例数据更小,所反映的供需矛盾更为突出。 由于装备能力不足,导致模锻件尺寸超差,零件的机械加工量大,材料利用率低,成本上升。如我国的1MJ对击锤当量等级仅相当于4万吨模锻压机,是我国目前最大级别模锻设备。其最大的缺点是精度差、模具寿命低;由于我国大型压机缺乏,在设备使用上往往是以小代大,既不安全,又造成工艺火次增多,致使材料烧损严重,锻件内部质量下降。如西南铝的3万吨模锻压机工作台面大,不适于集中载荷锻件。不得已有时也生产集中载荷锻件,但对设备而言十分危险,对质量而言也难以保证,于是有许多航空锻件不得不依靠国外进口。 美国波音747~787、A320~380的钛合金起落架,F-16飞机钛合金机身隔框,D-10飞机的后支承环,915发动机机座,苏27~33飞机钛合金大型结构件,GT25000舰用燃气轮机直径1.2米涡轮盘等都是在上述大型模锻水压机上模锻成形的。 当前正在进行的11#工程(歼11)国产化建设项目,自行研制的10#工程(歼10),FWS-10发动机,GT25000型舰艇用燃气轮机以及正在研制的四代机等关系到国防实力的项目,其配套模锻件,都需要在7万吨以上水压机上模锻成形。从国外购进,不但价格昂贵,而且存在隐患,一旦国际形势变化,就很难保障供应,绝非长远之计。最近在美国的高压之下,乌克兰、以色列等国取消了对我国的军工合同就是最好的例证。 中国、俄罗斯、美国分属三个不同的政治、军事阵营,各自都应有独立的军事装备工业体系,否则会因对装备的依赖而失去军事、政治上的坚定性和独立性。历史和现实深刻地教育了我们:我国国防安全必须建立在自力更生原则的基础之上,航空事业的发展必须前瞻性地优先发展大型模锻压机。大型模锻机是生产航空大型模锻件、发展大型军事装备和其他大型民用装备必须的基础设备。
3# 独旅者 好像二重也正在建设8万吨模锻压机,厂房都立起来了。
(1)各类零件规格尺寸和结构相差悬殊,机床工具等工艺装备通用性不高。如加工机身结构件需要采用高刚性的高效、大型、高速机床,加工发动机关键件需要采用精度及柔性高的精密机床,加工机载设备零件的需要采用多功能的复合机床。 (2)现代航空制造业所面临的通常都是多品种、小批量、短生产周期的生产任务,因此要求工艺系统有较高的响应速度。 (3)产品零件结构复杂,加工难度大。零件的外形涉及机身外形、机翼外形、翼身融合区等,多数零件与飞机的气动外形相关,周边轮廓与其他零件还有复杂的装配协调关系。 (4)零件切削加工量大。由于越来越多的采用整体结构设计,使得需要切削加工的零件数量大幅增加,而且大部分零件在切削过程中材料去除量非常大,部分飞机结构件的材料去除率达90%以上。 (5)薄壁、易产生加工变形。存在大量的薄壁、深腔结构,为典型的弱刚性结构。 (6)加工精度高。由于要实现无余量装配,对工艺分离面的对缝、间隙等要求十分严格,零件制造精度要求高。 (7)刀具及切削参数选用困难。由于刀具工业的发展赶不上新材料的开发和应用步伐,又缺少加工切削数据库的支持,使得如何合理选择刀具和科学选用加工参数成为工艺技术的一个难点。
山高刀具集团技术培训经理 Patrick de Vos 尽管制造商处理的零件、工件材料和加工工艺千差万别,但他们都有一个 共同的目标,那就是在指定的时间内,以适当的成本,生产出一定数量的、满足质量要求的工件。 金属切削刀具的选择通常以应用为导向:车间寻找可以加工某些工件材料(例如钢件或铝件)的刀具,或者可以执行特定操作(例如粗加工或精加工)的刀具。一个更有利的刀具选择方法是首先考虑如何让加工操作与制造商的整体业务相吻合。 此类方法的首要任务是确保工艺可靠性,并消除不合格的零件和计划外停机。一般来说,可靠性是一个尊重规则的问题。如果生产车间不承认和尊重切割力、热力和化学力对刀具的影响,那么可靠性将无从谈起,取而代之的是刀具故障。 在建立稳定的工艺后,应选择刀具的特性和切削条件,以便符合金属加工业务的总体目标。例如,在大批量的简单零件生产中,以最低的成本实现最大的产量通常是首要考虑的因素。但另一方面,在品类杂、小批量的高价值复杂零件生产中,总可靠性和精确性要比解决制造成本更重要。对于此类小批量生产场合,装夹系统需要满足灵活性要求(参见附注)。 如果成本效益是主要目标,则必须根据每个切削刃的成本来选择刀具,并且必须选择与所选刀具相平衡的切削条件。加工参数应强调较长的刀具寿命和工艺可靠性。反之,如果工件质量是优先考虑事项,则在适当的切削条件下采用高性能的精密刀具是正确的方法。不管目标是什么,每一组不同的目标都会导致选择不同的切削条件和刀具。 在对新的零件加工进行初步规划时,刀具和切削条件的选择应首先考虑加工方法、刀具槽型和刀具材料。所加工的零件将在很大程度上决定这些要求。例如,一个航空用镍基零件可能提示采用具有正角槽型的硬质合金立铣刀进行轮廓铣。该选择以生产车间对于工件生产速度、成本和质量的基本目标为导向,并且还取决于所采用的、旨在实现这些目标的切削深度、进给量和切削速度。 为了修改现有的零件加工操作以实现更出色的生产率、经济性或可靠性,可以采用不同的选择过程。在这些情况下,建议采用渐进的方法,首先改变切削条件,然后是槽型、切削材料、刀具概念,最后是加工方法。值得注意的是,大多数生产车间的做法与此相反,在尝试改进加工成果时,首先考虑的是改变刀具或加工方法。 一个更容易且通常有效的初始方法是从改变切削参数入手。切削条件有着广泛的影响,而对切削速度或进给量稍加改变或许可以解决问题或提高生产率,并且不会因更换刀具而浪费时间和金钱。 如果修改切削参数不能达到预期的效果,可以改变切削刀具的槽型。然而,与简单地改变切削参数相比,这一步骤更为复杂,将需要采用新的刀具,并会增加刀具和机器时间成本。另一种选择是改变切削刀具的材料,但也将涉及更多的时间和金钱投资。改变切削刀具或或刀柄本身可能是必要的,但这增加了采用定制刀具的可能性,所有这些都会进一步导致制造成本的上升。 如果所有这些步骤都不能提供理想的结果,那么可能需要改变加工方法。关键是要以深思熟虑的、逐步的方式来探索改变,从而明确哪些因素可以真正产生预期的成果。 CAM 系统似乎是一个快速而简单的方法,许多车间使用它来指导他们的刀具选择。在许多情况下,该方法是有效的,但可能不会提供最佳的结果。CAM 系统并不会全面地考虑各个不同的操作特性。举例来说,应用铣刀并不非只是输入一下速度、进给量和切削深度那么简单。最佳的应用涉及众多因素,例如刀具的刃口数、如何出色地排屑、刀具的强度、铣床的稳定性等等。您需要认识到所有这些因素才能全面实现您的加工操作目标,即金属去除率、刀具寿命、表面粗糙度或经济性。 许多车间管理者认为,只需简单地增加切削速度便会在一定的时间内生产出更多的零件,因此降低了生产成本。然而,生产成本的因素有很多,并非只有产量。例如,一个中途需要更换刀具的操作,将会对零件质量和加工时间产生不利的影响。 提高切削速度确实会加快生产速度,但刀具寿命会缩短。加工成本将会因更频繁的刀具替换和更长的机器停机时间(更换刀具期间)而上升。 提高切削速度会缩短刀具寿命,并可能导致操作不稳定,而改变切削深度或进给量对刀具寿命影响极小。因此,要获得最好的结果,需要采用平衡的方法,即在减少切削速度的同时相应比例地增加进给量和切削深度。采用尽可能大的切削深度会减少走刀次数,从而缩短加工时间。进给量也应该采用最大值,尽管过大的进给量会影响工件的质量和表面粗糙度。 一个颇具代表性的例子是,当将切削速度从 180 米/分钟提升到 200米/分钟时,金属去除率大约仅会增加 10%,但会对刀具寿命产生不利影响;然而,当将进给量从 0.2 毫米/转提升到 0.3 毫米/转时,金属去除 率会提升 50%,而且几乎不会影响刀具寿命。 在大多数情况下,在相同或较低的切削速度下增加进给量和切削深度将会增加操作的金属去除率,其效果与单纯通过提高切削速度所实现的效果相同。组合采用较低的切削速度、更大的进给量和较小的切削深度时,获得的好处是减少能源消耗。 优化切削条件的最后一步是选择一个适当的最低成本或最大生产率标准,然后使用切削速度来优化该标准的结果。20 世纪初,美国的机械工程师 F.W. Taylor 开发出了一个用于指导该选择的模型。 该模型显示,对于给定的切削深度和进给量组合,在特定的切削速度范围内,刀具的损耗是安全、可预测且可控制的。在此范围内工作时,可以量化切削速度、刀具磨损和刀具寿命之间的关系。目标是提高切削速度以降低加工时间成本,但加快的刀具磨损并不会过度增加切削刀具成本。 优化刀具应用的其它步骤包括对刀具基体和槽型的特性进行微调。正如调整切削条件需要根据所需的结果进行权衡一样,通过改变刀具基体来最大化生产率也需要在基体的各个属性之间进行权衡。 因为刀具的切削刃必须比它所切削的材料更硬,因此硬度是一个重要的刀具特性。更高的硬度,特别是在高速加工会产生较高温度的情况下,将会延长刀具寿命。然而,刀具越硬,也就越脆。在粗加工中遇到不均匀的切削力时,尤其是在涉及不同规模或切削深度的断续切削中,硬刀具更容易断裂。此外,不稳定的机床、夹具或工件也会诱发故障。 相反,通过增加钴粘结剂的含量来提高刀具的韧性,可使刀具拥有更强的抗冲击能力。但与此同时,这也降低了刀具的硬度,导致刀具在高速操作中或加工磨蚀性工件时发生较快的磨损和/变形。关键是要根据所加工的工件材料来平衡刀具的特性。 选择刀具槽型也涉及到权衡问题。正角切削槽型和锋利的切削刃可以减少切削力并最大化切屑流。然而,锋利切削刃的强度不如钝化的切削刃。倒棱、倒角等几何特征可改善切削刃的强度。 通过在正角槽型中设置倒棱(切削刃后面的加强区域),可以提供足够的强度来应对特定的操作和工件材料,并且可以尽可能减小切削力。倒角可以支撑锋利切削刃的最薄弱部位,代价是增加了切削力。“硬”的切屑控制 槽型通过一个相对尖锐的角来引导切屑并立即使它们卷曲和折断。这些槽型对长切屑材料来说是有效的,但在切削刃上增加了额外的负荷。“软”的切屑控制槽型在切削刃上产生较小的负荷,但会产生较长的切屑。不同 的几何特征以及刀具刃口处理(例如研磨)可以相互结合,从而优化刀具在特定工件材料中的切削性能。 用于计算加工成本的模型也可以采用微观视角和宏观视角。微观模型会从狭隘的视角考虑切削成本,并将切削条件直接与切削成本相关联。而宏观经济模型则从更广的视角切入,侧重于生产指定的工件时所需的总计 时间。 制造商通过多种方式来测量生产速度,包括一段时间内完成的工件数量乃至完成加工所需的总计时间。很多因素会影响生产速度,包括工件形状要求和材料特性、整个工厂的产品流、人员的投入、维护、周边设备以及环保、回收和安全问题(请参见附注)。 制造成本中的某些要素是固定的。工件的复杂程度和材料通常决定了制造零件时所需的加工操作的类型和数量。工厂机床的采购成本、维护成本和电力成本基本上是固定成本。人工成本虽然比较灵活,但至少在短期内能够有效地固定下来。这些成本必须由所加工的零件换取的销售收入来抵消。提高生产速度 — 也就是工件转 换为成品的速度 — 可以抵消固定成本。 必须指出的是,尽管车间人员和生产工程师(如果有)都非常关心他们所提供的切削条件和生产率,但高层管理人员不太关心这些数字,因为它们与生产运营的业务目标是一个整体。那些负责选择切削条件和刀具的人员应该首先考虑他们公司的加工操作的更广泛目标,并根据它们来选择有助于实现这些目标的切削条件和刀具。 由于及时生产策略的使用越来越普及和外包服务的不断扩大,制造业正在呈现出从大批量生产向品类杂、小批量生产模式发展的趋势。分包商的生产也开始呈现出小批量、间歇性、重复性的特点。出于平衡生产力和刀具成本的考虑,需要刀具能够在广泛的加工应用中提供出色的多功能性和灵活性。通过将车间内不同刀具的数量减至最少,可以缩短刀具处理时间并增加用于加工操作的时间。 在长期加工相同零件的个别操作中,提高生产率的传统方法是采用专门为此设计的刀具。如果费用可以在长期的生产运行中摊销,则设计和采用专用刀具是值得的。 然而,由于平衡生产率和刀具成本的考虑,对于品种杂、小批量的生产场合,最好是采用能够在众多应用中执行灵活加工的“通用”刀具。这些刀具无需在更换工件时更换新的刀具,因此尽可能缩短了停机时间。此外,它们还消除了安装和试用新刀具的必要。 此类刀具的一个示例是山高的 Turbo 铣刀系列。这些刀具在广泛的应用中具有卓越的通用性,可以提供出色的成本效益和高性能。这些刀具具有正角切削槽型,可降低功耗、延长刀具寿命并尽可能增加切削深度和进给量。 通用刀具的另一方法是装配一套适用于各种应用的刀具。山高精选刀具专为提供灵活性而设计。所选的刀具组包括有限数量的刀具,它们或许不能在所有应用中提供绝对的最大生产率或成本效益,但在加工日益变化的各种工件材料和部件所需的最大灵活性方面,它们却是最经济的最佳选择。
受教了,谢谢大大