关注新智造网

新智造网 > 加工问答 > 问答详情 我要提问

铸铁与45钢焊接裂纹

8388265 | 来自:黑龙江 大兴安岭 | 浏览595次 | 提问时间:12-28 23:24 | 回答数量:4
新手遇到老问题,铸铁与45钢焊接裂纹。
回答人:longpingyaoshan12-29 00:24
铸铁要保温焊
回答人:sunnyoldman12-29 00:12
采用Z308焊条+特殊工艺。
回答人:cxgsdgt12-28 23:54
最好预热一下!
回答人:zhubin12312-28 23:39
不一样的母材焊接应用专用焊条和特殊焊接工艺。

铸铁订单 铸铁厂家

标签: 铸铁 45钢 

您目前状态:非注册用户 (**部分为隐藏内容,仅对会员开放)

查看隐藏内容请先登录或注册会员 登  录 注  册

相关问答
在铸造行业,人们常说,铸造材料的成分决定组织,组织左右性能;这句话其实并不全面。我们在生产实践中发现许多铸铁,在相同成分时,力学性能却有较大差异。铁液的质量除与其成分有关联外,还与炉料配比(生铁用量、废钢用量、返回料用量、合金加入量),熔化与出炉温度,孕育工艺等有密切关系。所谓合成铸铁,就是指配料中使用50%以上的废钢,通过增碳合成的方法制取的铸铁材料,因为需要较高的熔化温度,只宜在电炉中熔炼。目前合成铸铁主要有合成灰铁和球铁。   通过大量实践,对于HT250、HT300等高强度灰铸铁来说,废钢左右强度、生铁影响组织。 1.配料禁忌   (1)高比例废钢(尤其是船板)与高比例回炉料(浇冒口、废铸件、铁屑)搭配,合成灰铁的废钢加入量不宜超过50%;   (2)高比例废钢(尤其是船板)与含硫磷高的生铁搭配;   (3)回炉料超过40%(浇冒口、废铸件、铁屑)。 2.配料优化组合(%)   组成生铁废钢回炉料   配比A403030 配比B304030 配比C204040配比D205030 3.锰硫含量   需要提高硬度时锰的含量可达1.0%~1.2%,但不要求相应提高硫的含量(关于灰铁中的硫含量,另行分析)。   某公司为了节约成本,多用废钢,在两个月内试制合成高牌号灰铸铁,废钢用量一度达60%,有一段时间除加入废钢外另加回炉料和少量铁屑,最初质量不错,但一段时间后发现铸件批量缩孔、缩松和有白色硬斑,并且持续不断越来越严重。   此缺陷成因:初步判断是铁液中MnS的含量过高而引起的铸件显微缩孔、缩松,MnS富集形成白色硬斑。这是由于高牌号灰铁HT300成分要求Mn含量较高(1%左右),加之废钢自身锰也高(船板中的16锰钢含Mn在1.6%),而废钢中的S以及回炉铁(包括铁屑)中的S和锰反应产生的MnS在炉料中的积累达到一定程度,就会产生过量,从而产生上述缺陷。   为了减少铁液中的MnS含量,一般用加入一定量的优质新生铁(低S低Mn)来调整,另外提高孕育效果,可使MnS细化,减弱其不良影响。   废钢加入量过大时,由于废钢熔点在1530℃左右,而生铁和回炉料的熔点只是1230℃左右,多用废钢增加了电耗,加大了铁液的过冷倾向,还吸附大量的氮气,一般来说合成铸铁工艺并不适用于灰铸铁,而比较适用于球铁。   前面已经说过,中频感应电炉熔炼铸铁工艺对比冲天炉熔炼,除了具有熔化温度高的优势外,却有不少缺点,主要有三个方面的问题:一是铁液过冷倾向较大,极易产生影响材料力学性能的D、E型石墨;二是铁液纯净,异质结晶核心较少,导致孕育效果差,在同等成分条件下,铸件强度偏低铁质偏硬;三是收缩倾向较大,在高牌号灰铸铁中锰含量较高时,容易产生显微缩孔、缩松。   针对上述问题,应对的措施是:   1.在熔化后期增加一个高温保持时间,尽可能使各种炉料熔化的铁液晶粒均匀,尤其是细化石墨;   2.适量增加外来异质核心(如硫化物),强化孕育效果,促进A型石墨的形成;   3.控制高牌号灰铸铁的硫、锰含量及其比例,控制回炉料比例,达到合适成分。   这些措施,对不同结构的铸件产品是有差别的,需在实践中掌握。   某公司某日,用电炉熔炼6炉灰铁HT300铁液,浇注液压阀G03、G02等产品,经解剖内部组织发现大面积显微缩孔、缩松、缩裂,共830只全部报废。检测布氏硬度HBS241,化学成分C 3.27%,Si 1.78%,Mn 0.83%,S 0.087%,P 0.04%。珠光体98%,E形石墨达80%(A型20%),石墨长度5级。据有关人员研究分析,应是铁液材质出了问题。   化学成分分析的结果,对一般的薄壁HT300铸件来说似乎是正常的,然而对于液压阀铸件(壁较厚)却出了问题。此缺陷成因:初步判断是铁液中MnS的含量过高而引起的铸件显微缩孔、缩松、缩裂,也就是说铁液中的S、Mn含量超出铸件所适应的范围(对不同铸件其成分量有差别)。   由于在熔炼中加入了一定量的增S剂,铁液中的S、Mn含量积累达到一定程度,就会导致铁液含S量超出铸件自身正常凝固结晶的要求,从而产生此类缺陷。对策:停止加入增S剂,调整Mn的含量,保证HT300灰铁的五元素的正常含量,调整后,缺陷全部消除。   在电炉灰铸铁铁液中通过加入增S剂形成一定量的MnS,作为异质核心,提高孕育效果,这从理论来说是正确的,但是近年来大多数文献资料所说,电炉高牌号灰铁的含S量需控制在0.05%~0.10%比较合适,然而许多工厂的实践证明,当含Mn量在1%左右时,若铸件成分分析含S量超过0.05%,铸件就开始产生缩孔缺陷,当含S量超过0.07%时就会发生批量缩孔,这种现象如何解释呢?   灰铸铁中的S有两种存在形式,一种是单质,另一种是化合状态的MnS,灰铁中起结晶核心作用的硫,主要是化合状态的MnS,我们现在的化验手段(无论是化学分析还是光谱分析),都只能分析出铸件和铁液中单质状态的S,而以化合状态(MnS)存在的S是化验不出来的。当单质S含量超过0.05%时,化合态的S含量就比较高了,此时的铁液中:   MnO+FeS=MnS+FeO,FeO+C=Fe+CO,或2FeO+C=2Fe+CO2   这时铁液在凝固过程中就在析出CO或CO2的同时产生部分棕色的MnS粉沫,形成铁渣反应气缩孔。只要具备一定的条件,这种气缩孔,不仅在电炉铁液也在冲天炉铁液中发生。其实我们在电炉熔化过程中,已经增加了一部分硫,这些硫来自于:   1、由回炉的浇注系统带来,浇注系统中的硫磷含量远高于铸件中的含量;   2、生铁中的硫,一般生铁中的硫含量是不高的,而我们购买的普通生铁上面都携带不同程度的炉渣(拉圾),我们是不会化验的,但这些拉圾却含有较高的硫磷,会带入炉内;   3、废钢和生铁等炉料的铁锈,氧化铁含量较高,进入铁液中会增加硫的吸收率。在这样的情况下,如果我们再补加硫化铁来增S,就过分了。实际生产高牌号灰铸铁件时,铁液中的单质S控制在0.03%~0.05%之间为妥。 关于高牌号灰铁(以HT300为例)的孕育工艺,传统的孕育量是处理铁液量的0.3%~0.4%(以冲天炉生产为主),近年来随着电炉的普及,孕育量逐渐增加,最新资料推荐0.5%~0.6%,本人通过长期实践,选择孕育量在0.8%左右,取得强度硬度和切削加工性能的全面提高,铸件加工后的内部缺陷大幅度减少。   某公司生产高牌号的电磁阀,技术要求铸件硬度大于HB200,强度大于300N/mm2,该产品主要壁厚超过50mm,通过多次试验,在加大一次孕育量的同时,采取二次随流孕育,消除了厚壁带来组织粗大的缺陷,提高了铸件致密度,保证了产品质量。   关于铁液二次随流孕育,在浇注前加入粒度0.2~0.7mm的均匀的孕育剂,比较适用于厚件,而用于小件时反而增大了铁液的收缩性能。   有一个时期,某公司部分产品加工后表面呈现白色亮斑硬度很高,刀具打滑,经分析,原来是孕育剂的块度过大,与铁液包容量不相适合,致使孕育剂在铁液浇注时未能完全熔解,铸件局部硅量富集形成硬化相;当在铁液温度偏低进行二次随流孕育时,也会产生同样的缺陷。   有一家专业生产HT300灰铁液压件的工厂,浇注一种KP泵体,铸件壁厚30mm左右,按照HT300的经验成分配料,铁液成分:C3.0%~3.1%,Si1.7%~1.8%,Mn0.95%~1.05%,P 0.05%,S0.04%,铸件本体解剖抗拉达300N/mm2,但是连续多批产品在内浇口附近发生缩陷和缩裂,无论对浇注系统如何调整,就是不见效果,没有办法,只能提高碳当量降低强度,调整到C 3.2%~3.3%,Si 1.8%~2.0%时,缺陷消失,但产品经加工后试压,大部分产生膨胀渗漏,本体测试抗拉也不合格,造成主机厂批量退货。联想到以往有一批同类泵体,由于听了别人的建议,用硫铁增S,铁液含S在0.07%以上时,铸件大面积缩孔,积存大量废品,为了处理这批废品,根据稀土脱硫的原理,当加入此类废品时,在孕育过程中补加少量稀土镁硅铁(约0.2%),有效地降低了硫含量,解决了缩孔问题。   针对当时KP泵存在的缩陷和缩裂,虽然原铁液含硫并不高,在孕育时同样试加了少量稀土镁硅铁(约0.2%),也取得了理想的结果,缩孔问题完全解决。分析其机理,铸铁产生缩陷,主要还是铁液中的气体(包括氧、氮、氢等)作怪,这些气体在凝固后期析出时,铁液无法补充,产生了缺陷,而稀土镁硅铁作为一种灰铁变质剂(也是一种孕育剂),却好是脱除气体的能手,铁液含气量大幅度减少,缺陷也就消除了。
灰铸铁中的S有两种存在形式,一种是单质,另一种是化合状态的MnS,灰铁中起结晶核心作用的硫,主要是化合状态的MnS,我们现在的化验手段(。当单质S含量超过0.05%时,化合态的S含量就比较高了,此时的铁液中: 光谱中检测的不是S元素吗?
情况介绍:一月份在10吨中频电炉做了一轮合成铸铁试验,配料比例为废钢60%(压包废钢),回炉铁40%,材质为HT250,调整后铁水成分: C Si S Mn P Cr Mo Cu 第一次取样 3.17 1.46 0.1 0.545 0.033 0.242 0.054 0.585 第二次取样 3.23 1.69 0.1 0.683 0.033 0.238 0.052 0.571 出铁前取样 3.34 1.76 0.106 0.686 0.034 0.24 0.052 0.585 过程出现的问题:铁水调整成分合适后出现砂芯不够情况,因此铁水在炉内保温了2个多小时然后重新调整成分到上述的出铁前数值浇注,浇注温度比平时稍低,在1380-1390之间。铸件清理后取气缸体机脚位置3个试样检测强度和成分,检测结果如下: 强度:185-250MP,成分:C3.18-3.22,Si1.71-1.86,Mn0.657-0.74,P0.033,S0.097,Cu0.58,Cr0.245 疑问:我查资料都说合成铸铁废钢量增多强度会有所提升,但是我做的这次试验本体检测强度比正常加生铁工艺的强度低,正常生产的都在270MP以上,不知道为什么会这样呢?当时看三角试片断口灰口位置晶粒明显比正常生产要细和亮。
废钢加多后强度提升内在的机理要明白,不能经验主义。另外你的铁水在炉里保温温度多少,炉内保温了2个多小时,这个影响你考虑了没有?另外你的硬度多少,金相有没有发生变化?
我厂生产HT250材质机体,厂内有剩余的A3钢板,打算加工成冷铁使用,不知道钢制冷铁对铸铁有什么不良影响。请朋友们给点意见。
做个模具浇注灰铁200,钢件切割、精整费用高,钢件冷却能力比灰铸铁差点
各位网友:请问液压油缸的活塞最好用什么材质,好像应该用球墨铸铁,45#钢可以吗?如果用45#钢有什么危害
金属摩擦副,两个配对件应当选用不同材质,使用同材质就需要表面硬度很高或有较大差异。如同材质并且表面硬度不高,表面很容易咬合。 这是机械基本常识,为什么会这样,可以找一些摩擦学书籍读一读。 油缸缸筒材质一般为钢。如果活塞表面直接和缸筒内壁接触,活塞需要用灰铸铁、球铁或铜或铝制作,不能用只作通常热处理的45钢或40Cr钢。 如果活塞上使用了导向环,则活塞外径至少要比缸筒内径小0.5毫米,正常情况活塞外径绝对不会接触缸筒内壁,用不经热处理或仅作调质处理的45钢做活塞,就完全可以了。
为什么用高速钢铰刀铰削铸铁时易出现孔径扩大现象。而用硬质合金铰刀铰削钢件时易出现孔径收缩现象??? 急 .......................... 谢谢
下面的你可以参考一下,或许对你有所帮助! 在铰孔加工过程中,经常出现孔径超差、内孔表面粗糙度值高等诸多问题。    问题产生的原因    孔径增大,误差大    铰刀外径尺寸设计值偏大或铰刀刃口有毛刺;切削速度过高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯曲;铰刀刃口上粘附着切屑瘤;刃磨时铰刀刃口摆差超差;切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉;主轴弯曲或主轴轴承过松或损坏;铰刀浮动不灵活;与工件不同轴;手铰孔时两手用力不均匀,使铰刀左右晃动。    孔径缩小    铰刀外径尺寸设计值偏小;切削速度过低;进给量过大;铰刀主偏角过小;切削液选择不合适;刃磨时铰刀磨损部分未磨掉,弹性恢复使孔径缩小;铰钢件时,余量太大或铰刀不锋利,易产生弹性恢复,使孔径缩小;内孔不圆,孔径不合格。    铰出的内孔不圆    铰刀过长,刚性不足,铰削时产生振动;铰刀主偏角过小;铰刀刃带窄;铰孔余量偏;内孔表面有缺口、交叉孔;孔表面有砂眼、气孔;主轴轴承松动,无导向套,或铰刀与导向套配合间隙过大;由于薄壁工件装夹过紧,卸下后工件变形。    孔的内表面有明显的棱面    铰孔余量过大;铰刀切削部分后角过大;铰刀刃带过宽;工件表面有气孔、砂眼;主轴摆差过大。    内孔表面粗糙度值高    切削速度过高;切削液选择不合适;铰刀主偏角过大,铰刀刃口不在同一圆周上;铰孔余量太大;铰孔余量不均匀或太小,局部表面未铰到;铰刀切削部分摆差超差、刃口不锋利,表面粗糙;铰刀刃带过宽;铰孔时排屑不畅;铰刀过度磨损;铰刀碰伤,刃口留有毛刺或崩刃;刃口有积屑瘤;由于材料关系,不适用于零度前角或负前角铰刀。    铰刀的使用寿命低    铰刀材料不合适;铰刀在刃磨时烧伤;切削液选择不合适,切削液未能顺利地流动切削处;铰刀刃磨后表面粗糙度值太高。    铰出的孔位置精度超差    导向套磨损;导向套底端距工件太远;导向套长度短、精度差;主轴轴承松动。    铰刀刀齿崩刃    铰孔余量过大;工件材料硬度过高;切削刃摆差过大,切削负荷不均匀;铰刀主偏角太小,使切削宽度增大;铰深孔或盲孔时,切屑太多,又未及时清除;刃磨时刀齿已磨裂。    铰刀柄部折断    铰孔余量过大;铰锥孔时,粗精铰削余量分配及切削用