关注新智造网

新智造网 > 加工问答 > 问答详情 我要提问

堆焊裂纹如何预防

轻风_LOWN | 来自:广东 潮州 | 浏览447次 | 提问时间:07-12 15:28 | 回答数量:0
在用激光熔覆进行司太立钴基焊条堆焊时,为什么焊后出现无数裂纹。而且我们也反复试验,通过焊前预热及焊后保温的方法还是出现太多裂纹,搞得一筹莫展。请问各位大神如何避免

标签: 堆焊裂 激光熔覆 

您目前状态:非注册用户 (**部分为隐藏内容,仅对会员开放)

查看隐藏内容请先登录或注册会员 登  录 注  册

相关问答
据悉,马扎克公司推出一款INTEGREXI-400AM,配备多个Ambit激光熔覆头,通过变换工具头,能够从高速切削,切换到精细金属沉积。INTEGREXi-400AM适宜于小批量加工非常难以切削的材料,这些材料通常用于航空航天、能源和医疗行业。    在操作中,INTEGREXI-400AM在喷嘴前端向工件表面喷出金属粉末、同时照射纤维激光,在各母材上熔融、凝固金属粉末。这种方法还能将母材与其他金属强力接合起来。比如,在作为母材的“Inconel738”上,对用于航空领域部件的镍基超合金“Inconel718”实施沉积成型。因此可用于修复磨损或损坏的零部件,如航空涡轮叶片等。    在机械加工方面,INTEGREXI-400AM提供了完整的5轴功能可以轻松地处理固态坯料或铸件、圆形零件,高异形零件和棱柱零件,以及那些经过增材制造处理之后的零件。    INTEGREXi-400AM为客户提供了一项区别于传统零部件设计、加工的革新性生产方式。该技术特别适合于加工小批量、难加工材料产品,如航空航天领域耐热合金零部件、能源领域高硬度材料工具和零部件、医疗设备领域高精度特种合金零部件。客户可以通过增材制造的方法很容易地在零部件上添加出“近净成形”的产品构件,然后通过铣削的方式迅速完成精加工任务,如果需要的话,还可以进行激光打标。    INTEGREXi-400AM采用的是金属粉末激光烧结增材制造技术,首先光纤激光热源融化金属粉末,然后熔覆头(即增材制造喷嘴)将熔融的金属粉末按设计需求逐层喷涂,逐渐凝结成所需形状。该系统还可以加入不同类型的金属,来修复现有的磨损或损坏的部件,尤其像修复航空涡轮叶片,可以极大地节约成本。    马扎克提供两种熔覆头类型:高速或高精度。主轴上安装的熔覆头可自动更换,收放在刀库中。用户可根据造型形状、加工条件及金属粉末材料的种类等区别使用不同的熔覆头。    INTEGREXi-400AM能够进行全面的五轴车铣复合加工,B轴摆动幅度在-30/210°之间,可以轻松地处理多棱体锻件或铸件、回转体零件和复杂异形零件,以及那些经过增材制造加工后的零件,同时配置了由车削主轴完成全C轴分度及可编程尾座。
这算是金属的3D打印吗 ?有视频观赏不?
尽管这几年来,我国模具行业结构和体制已经作出了很大的改变,主要表现为:中高档模具、大型、精密、复杂、长寿命。相比以前,我国模具工艺技术水平有着很大的提高,但是国内模具行业生产的高中低端的比例极不平衡,这非常不利于我国模具行业的发展。由于下游行业,尤其是汽车行业的关键和核心模具对进口依赖程度较高,使得相关主机产品所需的一系列关键、核心注塑件产品也主要由这些国际知名模具企业提供。激光技术在这不利的发展状况下,发扬它的独特优势,为模具行业发展高端市场出一份力。 激光表面处理技术,能使低等级材料实现高性能表面改性,达到零件制造低成本与工作表面高性能的最佳组合,具有可观的经济效益和社会效益。 激光束的能量可连续调整,并且没有惯性,配合数控系统,可以对形状复杂的零件和其它常规方法难以处理的零件进行局部硬化处理,也可以在零件的不同部位进行不同的激光硬化处理。正因为激光表面处理的上述特点,它特别适用于常规硬化处理(如渗碳和碳氮共渗淬火、氮化及高中频感应加热淬火等)所难于实现的某些零件及其局部位置的表面强化处理,因此,在模具制造中具有独特优势: (1)可实现用低档模具钢或铸铁替代高档模具钢; (2)用国产模具钢替代进口模具钢; (3)可对模具实行增强性修复(再制造工程),降低模具制造成本。 在模具制造中,应用激光表面硬化技术,可以集设计、材料选择、制模、检验、修复等技术于一体,大幅度缩短设计制造周期,降低生产成本,变革模具制造方式,最终整合提升整个模具产业水平。这些优点,无论在技术性还是在经济性及服务性上,都是现有传统技术所无法比拟的。 在模具制造中,金属的激光熔融日益增加的重要性是主要原因。 采用这种工艺,冷却通道可以设置在非常贴近模具轮廓的下面。对有着设有加强筋和网状筋的一些不同壁厚的复杂零件,能在贴近轮廓需要冷却的部位进行冷却。而在前些年,注塑过程中材料流动特性是不可控制的,但现在其可控性是可以实现的了。通过冷却,除了可以缩短成型周期外,还可以减少零件的变形,冷却通道的横截面大于5mm。因此,就能把冷却通道安置在贴近模具轮廓2~3mm的部位,以进行最佳的冷却。 还有与冷却不同的是,通过这样的通道来实现温度的控制。例如,发生在高光泽反射镜(高光泽效应)的温度调控。有一些模具甚至通过分开的通道回路承担两个任务:一个通道对高光泽反射表面进行温度控制;而在有加强筋的内部轮廓则通过另一个通道实施冷却,以避免构件的变形。Fanacht公司所生产的采用这种冷却技术的模具,在用于批量生产时,生产时间可以缩短40%,这意味着大幅度地提高了注塑的生产效率。 修复模具的方法很多,如电火花工艺、氩弧焊修复、激光堆焊技术、电刷镀方法等。目前,在精密模具修补方面已逐步被激光焊所代替。 激光焊是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接。这种焊接方法通常有连续功率激光焊和脉冲功率激光焊。激光焊的优点是不需要在真空中进行,缺点则是穿透力不如电子束焊强。激光焊时,能进行精确的能量控制,因而可以实现精密器件的焊接,它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。
很多这样国内的大专院校的教授们在实验室里做出来的东西,完全不与实际生产结合! 长安之星模具激光表面淬火
压铸模具是模具中的一个大类。随着我国汽车摩托车工业的迅速发展,压铸行业迎来了发展的新时期。同时,也对压铸模具的综合力学性能、寿命等提出了更高的要求。要满足不断提高的使用性能需求仅仅依靠新型模具材料的应用仍然很难满足,必须将各种表面处理技术应用到压铸模具的表面处理当中才能达到对压铸模具高效率、高精度和高寿命的要求。压力铸造是使熔融金属在高压、高速下充满模具型腔而压铸成型,在工作过程中反复与炽热金属接触,因此要求压铸模具有较高的耐热疲劳、导热性耐磨性、耐蚀性、冲击韧性、红硬性、良好的脱模性等。因此,对压铸模具的表面处理技术要求较高近年来,各种压铸模具表面处理新技术不断涌现,但总的来说可以分为以下三个大类:(1)传统热处理工艺的改进技术;(2)表面改性技术,包括表面热扩渗处理、表面相变强化、电火花强化技术等;(3)涂镀技术,包括化学镀等。   1 传统热处理工艺的改进技术   传统的压铸模具热处理工艺是淬火-回火,以后又发展了表面处理技术。由于可作为压铸模具的材料多种多样,同样的表面处理技术和工艺应用在不同的材料上会产生不同的效果。史可夫最近提出针对模具基材和表面处理技术的基材预处理技术,在传统工艺的基础上对不同的模具材料提出适合的加工工艺,从而改善模具性能,提高模具寿命。热处理技术改进的另一个发展方向,是将传统的热处理工艺与先进的表面处理工艺相结合,提高压铸模具的使用寿命。如将化学热处理的方法碳氮共渗,与常规淬火、回火工艺相结合的NQN(即碳氮共渗 - 淬火-碳氮共渗)复合强化,不但得到较高的表面硬度,而且有效硬化层深度增加、渗层硬度梯度分布合理、回火稳定性和耐蚀性提高,从而使得压铸模具在获得良好心部性能的同时,表面质量和性能大幅提高。   2 表面改性技术   2.1 表面热扩渗技术   这一类型中包括有渗碳、渗氮、渗硼以及碳氮共渗、硫碳氮共渗等。   2.1.1 渗碳和碳氮共渗   渗碳工艺应用于冷、热作和塑料模具表面强化中,都能提高模具寿命。如3Cr2W8V钢制的压铸模具,先渗碳、再经1140~1150℃淬火,550℃回火两次,表面硬度可达HRC56~61,使压铸有色金属及其合金的模具寿命提高1. 8~3.0倍。进行渗碳处理时,主要的工艺方法有固体粉末渗碳、气体渗碳、以及真空渗碳、离子渗碳和在渗碳气氛中加入氮元素形成的碳氮共渗等。其中,真空渗碳和离子渗碳则是近20年来发展起来的技术,该技术具有渗速快、渗层均匀、碳浓度梯度平缓以及工件变形小等特点,将会在模具表面尤其是精密模具表面处理中发挥越来越重要的作用。   2.1.2 渗氮及有关的低温热扩渗技术   这一类型中包括渗氮、离子渗氮、碳氮共渗、氧氮共渗、硫氮共渗以及硫碳氮、氧氮硫三元共渗等方法。这些方法处理工艺简便、适应性强、扩渗温度较 低(一般为480~600℃)、工件变形小,尤其适应精密模具的表面强化,而且氮化层硬度高、耐磨性好,有较好的抗粘模性能。3Cr2W8V钢压铸模具, 经调质、520~540℃氮化后,使用寿命较不氮化的模具提高2~3倍。美国用H13钢制作的压铸模具,不少都要进行氮化处理,且以渗氮代替一次回火,表 面硬度高达HRC65~70,而模具心部硬度较低、韧性好,从而获得优良的综合力学性能。氮化工艺是压铸模具表面处理常用的工艺,但当氮化层出现薄而脆的 白亮层时,无法抵抗交变热应力的作用,极易产生微裂纹,降低热疲劳抗力。因此,在氮化过程中,要严格控制工艺,避免脆性层的产生。   最近,国外提出采用二次 和多次渗氮工艺。采用反复渗氮的办法可以分解容易在服役过程中产生微裂纹的氮化物白亮层,增加渗氮层厚度,并同时使模具表面存在很厚的残余应力层,使模具 的寿命得以明显提高。此外还有采用盐浴碳氮共渗和盐浴硫氮碳共渗等方法。这些工艺在国外应用较为广泛,在国内较少见。如TFI+ABI工艺,是在盐浴氮碳 共渗后再于碱性氧化性盐浴中浸渍。工件表面发生氧化,呈黑色,其耐磨性、耐蚀性、耐热性均得到了改善。经此方法处理的铝合金压铸模具寿命提高数百小时。再如法国开发的硫氮碳共渗后进行氮化处理的oxynit工艺,应用于有色金属压铸模具则更具特点。   2.1.3渗硼   由于渗硼层的高硬度(FeB:HV1800~2300、Fe2B:HV1300~1500)、耐磨性和红硬性,以及一定的耐蚀性和抗粘着性,渗硼技术在模具工业中获得较好的应用效果。但因压铸模具工作条件十分苛刻,故渗硼工艺较少应用于压铸模具表面处理中,但近年来,出现了改进的渗硼方法,解决了上述问题,而得以应用于压铸模具的表面处理,如多元、涂剂粉末渗等。涂剂粉末渗硼的方法是将硼化合物和其他渗剂混合后涂覆在压铸模具表面,待液体挥发后,再按照一般粉末渗硼的方法装箱密封,920℃加热并保温8h,随之空冷。这种方法可以获得致密、均匀的渗层,模具表面渗层硬度、耐磨性和弯曲强度都得到提高,模具使用寿命平均提高2倍以上。   2.1.4稀土表面强化   近年来,在模具表面强化中采用加入稀土元素的方法得到广泛推崇。这是因为稀土元素具有提高渗速、强化表面及净化表面等多种功能〔13〕,它对改善模具表面组织结构,表面物理、化学及力学性能均有极大地影响,可提高渗速、强化表面、生成稀土化合物。同时可消除分布在晶界上微量杂质的有害作用,起着强化和稳定模具型腔表面晶界的作用。另外,稀土元素与钢中的有害元素发生作用,生成高熔点化合物,又可抑制这些有害元素在晶界上偏聚,从而降低深层的脆性等。在压铸模具表面强化处理工艺中加入稀土元素成分,能够明显提高各种渗入法的渗层厚度、提高表面硬度,同时使得渗层组织细小弥散、硬度梯度下降,从而使得模具的耐磨性、抗冷、热疲劳性能等显著提高,从而大幅度提高模具寿命。目前应用于压铸模具型腔表面的处理方法有:稀土碳共渗、稀土碳氮共渗、稀土硼共渗、稀土硼铝共渗、稀土软氮化、稀土硫氮碳共渗等。   2.1.5表面被覆强化   近年来由于冷焊技术的发展,使得表面处理技术得到很大的提高,特别是ESD-05上市以后,可以使用碳化物等不同材质的焊材对表面进行处理,这种方式方便简单,成本低,使用方便。同时效果也好,渐渐的已经成为行业的主选。   2.2表面激光涂层   2.2.1激光表面处理   激光表面处理是使用激光束进行加热,使工件表面迅速熔化一定深度的薄层,同时采用真空蒸镀、电镀、离子注入等方法把合金元素涂覆于工件表面,在激光照射下使其与基体金属充分融合,冷凝后在模具表面获得厚度为10~1000μm具有特殊性能的合金层,冷却速度相当于激冷淬火。如在H13钢表面采用激光快速熔融工艺进行处理,熔区具有较高的硬度和良好的热稳定性,抗塑性变形能力高,对疲劳裂纹的萌生和扩展有明显的抑制作用。最近,萨哈和达霍特若采用在H13基材上进行激光熔覆VC层的方法,研究表明,获得的模具表面实质是连续、致密无孔的VC钢复合覆层,它不仅有很强的在600℃下的氧化抗力,而且有很强的抗熔融金属还原的能力〔19〕。23电火花沉积金属陶瓷工艺在表面改性技术的不断发展中,出现了一种电火花沉积工艺。   该工艺在电场作用下,在母材表面产生瞬间高温、高压区,同时渗入离子态的金属陶瓷材料,形成表面的冶金结合,而母材表面也同时发生瞬间相变,形成马氏体和微细奥氏体组织〔20〕。这种工艺不同于焊接,也不同于喷镀或者元素渗入,应该是介于两者之间的一种工艺。它很好地利用了金属陶瓷材料的高耐磨、耐高温、耐腐蚀的特性,而且工艺简单,成本较低廉。是压铸模具表面处理的一条新路。   2.22WS焊机处理   WS焊机与激光焊机的原理是一样的,都是通过脉冲点焊的方式进行的。相对于激光焊来说更方便更灵活,焊丝直径0.1-2.0mm,同时上面内置氩弧焊的功能,这样更方便灵活。   3、涂镀技术   涂镀技术作为模具强化技术的一种,主要应用在塑料模、玻璃模、橡胶模、冲压模等工作环境相对简单的模具表面处理。压铸模具需要承受冷热应力交替的苛刻环境,所以一般不使用涂镀技术来强化压铸模具表面。但近年来,有报道采用化学复合镀的方法强化压铸模具表面,以提高模具表面抗粘着性、脱模性。该方法在铝基压铸模具上将聚四氟乙烯微粒浸润后进行(NiP)-聚四氟乙烯复合镀。实验证明,此方法在工艺上和性能上均为可行,大大降低了模具表面的摩擦系数。   模具压力加工是机械制造的重要组成部分,而模具的水平、质量和寿命则与模具表面强化技术休戚相关。随着科学技术的进步,近年来各种模具表面处理技术出现较大的进展。表现在:①传统的热处理工艺的改进及其与其他新工艺的结合;②表面改性技术,包括渗碳、低温热扩渗(各种渗氮、碳氮共渗、离子氮化、三元共渗等)、盐浴热扩渗、渗硼、稀土表面强化、激光表面处理和电火花沉积金属陶瓷等;③涂镀技术等方面。但对于工作条件极为苛刻的压铸模具而言,现有新的表面处理工艺还无法满足不断增长的要求,可以预计更为先进的技术,也有望应用于压铸模具的表面处理。鉴于表面处理是提高压铸模具寿命的重要手段之一,因此要提高我国压铸模具生产整体水平,表面处理技术将起着举足轻重的作用。
很好 很强大 学习了 楼主还有没有关于压铸的?
社区里有熟悉激光熔覆焊的朋友吗?谈谈使用情况。
寂寞啊,自己顶一下吧。